Аэродинамические сила и момент - определение. Что такое Аэродинамические сила и момент
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Аэродинамические сила и момент - определение

ФИЗИЧЕСКАЯ ВЕЛИЧИНА, ДИНАМИЧЕСКАЯ ХАРАКТЕРИСТИКА ВРАЩЕНИЯ
Крутящий момент; Механический момент; Момент сил; Вращательный момент; Вращающий момент; Поток крутящего момента; Момент вращающий; Вертящий момент; Силовой момент
  • Момент, действующий на рычаг
  • тяжестью]] и [[трение]]м, не учитываются).
  • 192x192px
  • Момент силы, приложенный к гаечному ключу. Направлен ''от'' зрителя
Найдено результатов: 6515
Аэродинамические сила и момент      

величины, характеризующие воздействие газообразной среды на движущееся в ней тело (например, на самолет). Силы давления и трения, действующие на поверхности тела, могут быть приведены к равнодействующей R этих сил, называются аэродинамической силой, и к паре сил с моментом М, называются аэродинамическим моментом. Аэродинамическую силу раскладывают на составляющие в прямоугольной системе координат (рис. 1), связанной либо с вектором скорости тела v (поточная, или скоростная, система координат), либо с самим телом (связанная система). В поточной системе сила, направленная по оси потока в сторону, противоположную направлению движения тела, называется аэродинамическим сопротивлением (См. Аэродинамическое сопротивление) Х, перпендикулярная ей и лежащая в вертикальной плоскости - подъёмной силой (См. Подъёмная сила) У, а перпендикулярная к ним обеим - боковой силой Z. В связанной системе координат аналогом первых двух сил являются тангенциальная Т и нормальная N силы. Аэродинамический момент играет важную роль в аэродинамическом расчёте летательных аппаратов, определяя их устойчивость и управляемость, и представляется обычно в виде трёх составляющих - проекций на оси координат, связанных с телом (рис. 2): Mx (момент крена), My (момент рыскания) и Mz (момент тангажа). Знаки моментов положительны, когда они стремятся повернуть тело соответственно от оси у к оси z, от оси z к оси х, от оси д; к оси у. А. с. и м. зависят от формы и размеров тела, скорости его поступательного движения и ориентации к направлению скорости, свойств и состояния среды, в которой происходит движение, а в некоторых случаях и от угловых скоростей вращения и от ускорения движения тела. Определение А. с. для тел различной формы и дри всевозможных режимах полёта является одной из главных задач аэродинамики (См. Аэродинамика) и аэродинамического эксперимента. См. также Аэродинамические коэффициенты.

Ю. А. Рыжов.

Рис. 1. Разложение аэродинамической силы на составляющие в поточной системе координат X, Y, Z и в связанной системе Т, N, Z; ось Z на рис. не изображена, она перпендикулярна плоскости чертежа.

Рис. 2. Проекции аэродинамического момента на оси координат: Mx - момент крена; My - момент рыскания; Mz - мoмeнт тангажа.

ВРАЩАЮЩИЙ МОМЕНТ         
мера внешнего воздействия, изменяющего угловую скорость вращающегося тела. Вращающий момент Мвр равен сумме моментов всех действующих на тело сил относительно оси вращения и связан с угловым ускорением тела ? равенством Мвр = I?, где I - момент инерции тела относительно оси вращения.
Момент силы         
Моме́нт си́лы (момент силы относительно точки) — векторная физическая величина, характеризующая действие силы на механический объект, которое может вызвать его вращательное движение. Определяется как векторное произведение радиус-вектора точки приложения силы \vec{r} и вектора силы \vec{F}.
Момент силы         

величина, характеризующая вращательный эффект силы при действии её на твёрдое тело; является одним из основных понятий механики. Различают М. с. относительно центра (точки) и относительно оси.

М. с. относительно центра О величина векторная. Его модуль Mo = Fh, где F - модуль силы, a h - плечо, т. е. длина перпендикуляра, опущенного из О на линию действия силы (см. рис.); направлен вектор Mo перпендикулярно плоскости, проходящей через центр О и силу, в сторону, откуда поворот, совершаемый силой, виден против хода часовой стрелки (в правой системе координат). С помощью векторного произведения М. с. выражается равенством Mo = [rF], где r - радиус-вектор, проведённый из О в точку приложения силы. Размерность М. с. - L2MT2, единицы измерения - нм, динсм (1 нм = 107 динсм) или кгсм.

М. с. относительно оси величина алгебраическая, равная проекции на эту ось М. с. относительно любой точки О оси или же численной величине момента проекции Рху силы F на плоскость ху, перпендикулярную оси z, взятого относительно точки пересечения оси с плоскостью. Т. е.

Mz = Mo cos γ = ± Fxy h1.

Знак плюс в последнем выражении берётся, когда поворот силы F с положительного конца оси z виден против хода часовой стрелки (тоже в правой системе). М. с. относительно осей x, y, z могут также вычисляться по формулам:

Mx = yFz - zFy, My = zFx - xFz, Mz = xFy - yFx,

где Fx, Fy, Fz - проекции силы F на оси; х, у, z - координаты точки А приложения силы.

Если система сил имеет равнодействующую, то её момент вычисляется по Вариньона теореме (См. Вариньона теорема).

Лит. см. при ст. Механика.

С. М. Тарг.

Рис. к ст. Момент силы.

МОМЕНТ ВРАЩАЮЩИЙ         
см. Вращающий момент.
Момент вращающий         
Вращающий момент         

мера внешнего воздействия, изменяющего угловую скорость вращающегося тела. В. м. равен алгебраической сумме моментов всех действующих на вращающееся тело сил относительно оси вращения (см. Момент силы, Вращательное движение). В. м. связан с угловым ускорением тела ε равенством Мвр = Iε, где I - Момент инерции тела относительно оси вращения.

ДИПОЛЬНЫЙ МОМЕНТ         
  • Рассчитанные электростатические поля четырёх различных типов электрических диполей.<br>
1. '''Поле идеального точечного диполя'''. Конфигурация поля в большом масштабе инвариантна и приблизительно соответствует полю любой конфигурации зарядов с ненулевым дипольным моментом на большом расстоянии.<br>
2. '''Дискретный диполь''' двух противоположно заряженных точечных зарядов разнесенных на конечное расстояние, — физический диполь.<br>
3. '''Тонкий круглый диск''' с равномерной электрической поляризацией вдоль оси симметрии.<br>
4. '''Плоский конденсатор''' с одинаково заряженными круглыми обкладками.<br>
Несмотря на различие этих конфигураций, вблизи которых поля существенно различаются, все эти поля сходятся к одному и тому же дипольному полю на больших расстояниях, где они приблизительно одинаковы, при этом любая система зарядов может моделировать идеальный электрический диполь.
ВЕКТОРНАЯ ФИЗИЧЕСКАЯ ВЕЛИЧИНА, ХАРАКТЕРИЗУЮЩАЯ, НАРЯДУ С СУММАРНЫМ ЗАРЯДОМ ЭЛЕКТРИЧЕСКИЕ СВОЙСТВА СИСТЕМЫ ЗАРЯЖЕННЫХ ЧАСТИЦ
Дипольный момент; ЭДМ
физическая величина, характеризующая свойства диполя. Электрический дипольный момент равен произведению положительного заряда электрического диполя на расстояние между зарядами и направлен от отрицательного заряда к положительному. Магнитный дипольный момент контура с током пропорционален произведению силы тока на площадь контура и направлен перпендикулярно плоскости контура так, что с его конца ток виден текущим против часовой стрелки. Дипольный момент определяет электрическое (магнитное) поле диполя на большом расстоянии от него, а также воздействие на диполь внешнего электрического (магнитного) поля.
Дипольный момент         
  • Рассчитанные электростатические поля четырёх различных типов электрических диполей.<br>
1. '''Поле идеального точечного диполя'''. Конфигурация поля в большом масштабе инвариантна и приблизительно соответствует полю любой конфигурации зарядов с ненулевым дипольным моментом на большом расстоянии.<br>
2. '''Дискретный диполь''' двух противоположно заряженных точечных зарядов разнесенных на конечное расстояние, — физический диполь.<br>
3. '''Тонкий круглый диск''' с равномерной электрической поляризацией вдоль оси симметрии.<br>
4. '''Плоский конденсатор''' с одинаково заряженными круглыми обкладками.<br>
Несмотря на различие этих конфигураций, вблизи которых поля существенно различаются, все эти поля сходятся к одному и тому же дипольному полю на больших расстояниях, где они приблизительно одинаковы, при этом любая система зарядов может моделировать идеальный электрический диполь.
ВЕКТОРНАЯ ФИЗИЧЕСКАЯ ВЕЛИЧИНА, ХАРАКТЕРИЗУЮЩАЯ, НАРЯДУ С СУММАРНЫМ ЗАРЯДОМ ЭЛЕКТРИЧЕСКИЕ СВОЙСТВА СИСТЕМЫ ЗАРЯЖЕННЫХ ЧАСТИЦ
Дипольный момент; ЭДМ

электрический, физическая величина, характеризующая электрические свойства системы заряженных частиц. Д. м. системы из N заряженных частиц равен

где ei - заряд частицы номера i, а ri - её радиус-вектор. Д. м. нейтральной в целом системы зарядов не зависит от выбора начала координат, а определяется относительным расположением (и величинами) зарядов в системе. В частном случае, нейтральная система из двух зарядов (, ) образует электрический диполь с Д. м. р = el, где l - радиус-вектор, проведённый от отрицательного заряда к положительному. В случае произвольной системы заряженных частиц её электрическое поле вдали от системы определяется различными мультиполями (См. Мультиполь): полным зарядом, Д. м., квадрупольным моментом и т.д. Однако электрическое поле нейтральной системы на больших по сравнению с размерами системы расстояниях в первом приближении определяется только её Д. м. Излучение электромагнитных волн, обусловленное изменением во времени Д. м. системы, называется дипольным излучением (см. Излучение).

Д. м. магнитный - см. Диполь, Магнитный момент.

Г. Я. Мякишев.

Знание - сила         
  • Обложки журнала за 1926, 1940, 1959, 1961, 1962, 1964, 1965, 1967, 1970, 1976, 1978, 1981, 1987 и 1991 годы
  • Логотипы журнала
  • Среднемесячные тиражи журнала «Знание — сила» с 1946 (послевоенное возобновление выпуска) по 2015 год
СОВЕТСКИЙ И РОССИЙСКИЙ НАУЧНО-ПОПУЛЯРНЫЙ ЖУРНАЛ
Знание-сила; Знание — сила (журнал); Знание-сила (журнал); Знание — Сила; Знание - сила; Знание - Сила; Знание-Сила; Знание – сила; Знание - сила (журнал); Знание – сила: Фантастика; Знание — сила: Фантастика
("Зна́ние - си́ла",)

ежемесячный научно-популярный и научно-художественный иллюстрированный журнал для молодёжи, орган Всесоюзного общества "Знание". Издаётся в Москве с 1926 (в 1942-45 не выходил). В журнале освещаются важнейшие современные проблемы науки и техники, рассказывается об интересных фактах и событиях прошлого и др. Тираж (1972) 500 тыс. экз.

Википедия

Момент силы

Моме́нт си́лы (момент силы относительно точки) — векторная физическая величина, характеризующая действие силы на механический объект, которое может вызвать его вращательное движение. Определяется как векторное произведение радиус-вектора точки приложения силы r {\displaystyle {\vec {r}}} и вектора силы F {\displaystyle {\vec {F}}} . Моменты сил, образующиеся в разных условиях, в технике могут иметь названия: кру́тящий момент, враща́тельный момент, вертя́щий момент, враща́ющий момент, скру́чивающий момент.

Момент силы обозначается символом M {\displaystyle {\vec {M}}} или, реже, τ {\displaystyle {\vec {\tau }}} (тау).

Единица измерения в СИ: Н⋅м. Величина момента силы зависит от выбора начала отсчёта радиус-векторов O.

Понятие момента силы используется, в основном, в области задач статики и задач, связанных с вращением деталей (рычагов и др.) в технической механике. Особенно важен случай вращения твёрдого тела вокруг фиксированной оси — тогда O выбирают на этой оси, а вместо самого момента рассматривают его проекцию на ось M {\displaystyle M_{\parallel }} ; такая проекция называется моментом силы относительно оси.

Наличие момента силы влечёт изменение момента импульса тела L {\displaystyle {\vec {L}}} относительно того же начала O со временем t {\displaystyle t} : имеет место соотношение d L / d t = M {\displaystyle d{\vec {L}}/dt={\vec {M}}} . В статике равенство нулю суммы моментов всех приложенных к телу сил является одним из условий (наряду с равенством нулю суммы сил) реализации состояния покоя.